
Notes on Computability
Anagha

Introduction
This report was done as a part of the Twoples Reading Program in Mathematics, under the guidance of
Dr. Waseet Kazmi. During the course of this project, we managed to covers the basics of Computabil-
ity Theory: partial and total computable functions, diagonalization, recursion theorems, and Turing
Reduction. The notes closely follow the book on Computability Theory by Rebecca Ward. The notes
thus far are short and succinct; I hope to furnish further details in the next revisions.

1

Computability Theory 2/19

Defining Computability
First, we focus on computable functions.

On functions
We focus particularly on these aspects of functions:
1. Limits: These functions are whole number valued, and their limits are convergent.
2. We deal with partial functions: A partial function f from a set X to a set Y is a function

from a subset S of X (might be proper or improper) to Y. Then S is called the domain of
definition or Dom(f). One can state the following for any partial function:

Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function. ∀𝑥 ∈ 𝑋,
• ∃𝑦 ∈ 𝑌 such that 𝑓(𝑥) = 𝑦
• otherwise, 𝑓(𝑥) is undefined.

If the subset S is improper, the function is said to be total.

Halting Criteria:
If 𝑥 ∈ Dom(f), then we say the computation halts (or converges), or 𝑓(𝑥) ↓. If 𝑥 ∉ Dom(f), we
say the computation diverges and is denoted by 𝑓(𝑥) ↑.

Equality of functions
Two total functions f and g are said to be equal (𝑓 = 𝑔) if (∀𝑥)(𝑓(𝑥) = 𝑔(𝑥)). For partial func-
tions,

𝑓 = 𝑔 → (∀𝑥)(𝑓(𝑥) ↓⇔ 𝑔(𝑥) ↓)&(𝑓(𝑥) ↓= 𝑦 → 𝑔(𝑥))

Characteristic function
Let A be a set. The characteristic function of A, denoted by 𝜒𝐴 is defined as:

𝜒𝐴(𝑛) = {1 if 𝑛∈𝐴
0 if 𝑛∉𝐴

Turing Machines
A Turing Machine is a mathematical model that abstracts computation. More precisely, any
Turing machine (TM) can be specified as a 4 tuple ⟨𝑞0, 𝑎, 𝑏, 𝑞1⟩. Here, 𝑞0 is the start state of the
TM, a is the current symbol being read, b is the instruction of the head as to which direction
to move to (L or R), and 𝑞1 is the final state.

Any computation that halts (and gives an output) uses only finitely many squares of the tape.

Exercises
1. Write a Turing machine to flip the bits of an input string, so ∗011010∗ becomes

∗100101∗.

Flip the current symbol being read, and move right. Go to the final state when a blank is read.
2. Write a Turing machine that adds 1 to an input in tally notation
• Let the TM be in state 𝑞0 with the head at the first 1.
• Move right until you hit the first blank.
• Write 1, then halt.

Mathematically, these are the rules:
• ⟨𝑞0, 1, 𝑅, 𝑞0⟩
• ⟨𝑞0, 𝐵, 1, 𝑞1

Anagha G 2/19

Computability Theory 3/19

Here 𝑞1 is the final state.

3. Binary addition
• ⟨𝑞0, 0, 1, 𝑞1⟩
• ⟨𝑞0, 1, 0, 𝑞2⟩
• ⟨𝑞2, 0, 𝑅, 𝑞0⟩
• ⟨𝑞0, 𝐵, 1, 𝑞1⟩

Partial Recursive Functions
Primitive Recursive Functions
The primitive recursive functions form the smallest possible class C such that the following hold:
1. ∀𝑥 ∈ Dom(f), 𝑆(𝑥) = 𝑥 + 1 ∈ 𝐶 (Successor Function)
2. All constant functions are in C: 𝑀𝑛

𝑚(𝑥1, 𝑥2, …, 𝑥𝑛) = 𝑚 ∀𝑚, 𝑛 ∈ ℕ
3. The projection functions are all in C: 𝑃𝑛

𝑖 (𝑥1, 𝑥2, …, 𝑥𝑛) = 𝑥𝑖 ∀𝑛 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛

The following two rules account for the closure:
4. Composition
5. Recursion

Examples
1. 𝑔(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 is primitive recursive

Soln:

𝑔(𝑥, 0) = 0

𝑔(𝑥, 𝑦 + 1) = 𝑔(𝑥, 𝑦) + 𝑥

2. 𝑔(𝑥, 𝑦) = 𝑥𝑦 is primitive recursive.

Soln: We already know that 𝑔(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 is primitive recursive. 𝑔(𝑥, 0) = 1

𝑔(𝑥, 𝑦 + 1) = 𝑥 ⋅ 𝑔(𝑥, 𝑦)
3. 𝑛! = 𝑛 ⋅ (𝑛 − 1) ⋅ ⋅ ⋅ 2 ⋅ 1 is primitive recursive.

Soln We already know that 𝑔(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 is primitive recursive.
• 0! = 1
• 𝑛! = 𝑛 ⋅ (𝑛 − 1)!

4. Consider a grid of streets, n east-west streets crossed by m north-south streets
to make a rectangular map with nm intersections; each street reaches all the
way across or up and down. If a pedestrian is to walk along streets from the
northwest corner of this rectangle to the southeast corner, walking only east
and south and changing direction only at corners, let 𝑟(𝑛, 𝑚) be the number of
possible routes. Prove r is primitive recursive.

Soln:

𝑟(𝑛, 0) = 1

𝑟(𝑛, 𝑚) = 𝑟(𝑛 − 1, 𝑚 − 1) + 𝑟(𝑛 − 1, 𝑚)

Logic is very similar to construction of Pascal’s triangle. 𝑟(𝑛, 𝑚) = (𝑛
𝑚)

Anagha G 3/19

Computability Theory 4/19

5. It is routine to check the following are also primitive recursive:
• min(x, y)
• max(x, y)

Non primitive recursive function
We now encounter our first total recursive function that is not primitive recursive: the Acker-
mann function. We give the following definition:

𝐴(𝑚, 𝑛) =
⎩{
⎨
{⎧𝑛+1 if 𝑚=0

𝐴(𝑚−1,1) if 𝑚>0 ∧𝑛=0

𝐴(𝑚−1,𝐴(𝑚,𝑛−1)) if 𝑚>0∧𝑛>0

Proposition: Let 𝜃(𝑛) be any primitive recursive function. Then, the following holds:

(∃𝑁)(∀𝑚)(𝑚 > 𝑁 ⇒ 𝐴(𝑚, 𝑚) > 𝜃(𝑚))

This means that the Ackermann function grows faster than any primitive recursive function.

Partial Recursive Functions: Unbounded Search
We shall add one more closure property to accommodate functions like the Ackermann function.
This set is clearly larger than that of primitive recursive functions. First, a definition:

“The class of partially recursive functions is the smallest class of functions satisfying the 5
properties primitive recursive functions satisfy, along with the additional closure property of
unbounded search.”

Unbounded search, Minimization or 𝜇 recursion Suppose 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑛). Let 𝜃(𝑥, 𝑦)
be a primitive recursive function in n+1 variables. Now, define 𝜓(𝑥) to be the smallest y such
that 𝜃(𝑥, 𝑦) = 0, and ∀𝑧 < 𝑦 𝜃(𝑥, 𝑧) is (well) defined.

• This closure property adds the sense of partiality; everything we had seen earlier were total
recursive functions.

• In simple terms, the 𝜇 operator searches for the least possible natural number with some
given property. Hence it is called the minimization operator.

Examples
1. 𝜇(𝑥 > 5) = 6

It returns the least natural number greater than 5.
2. Suppose 𝜃(𝑥, 𝑦) = {0 if 𝑥 even

1 if 𝑥 odd

Then

𝜇(𝜃(𝑥, 𝑦)) = {0 if 𝑥 even
∞ if 𝑥 odd

On Coding and Countability
While working with domains that aren’t explicit ℕ, it is sufficient to encode the elements of
that domain as elements as ℕ. Suppose the set is S. Effectively, this is the same as setting up
a bĳection between S and ℕ.

Effective Countability
• The sets for which such bĳections exist are called effectively countable
• ∀𝑠 ∈ 𝑆, im(s) is called its code
• It is important to worry about the finiteness of such sets.

Anagha G 4/19

Computability Theory 5/19

• Subsets of effectively countable sets are not necessarily effectively countable.

A TM can:
• Decode the input, perform computation, encode the output
• Perform computation on encoded input and get encoded output

Examples:
1. Give an encoding of ℤ into ℕ

Soln: An intuitive choice would be

𝑓(𝑘) = {
2𝑘 if 𝑘 ≥ 0
−(2𝑘 + 1) if k<0

Pairing Function
A pairing function is a bĳection

𝜋 : ℕ × ℕ → ℕ

𝜋(𝑥 + 𝑦) ≔
1
2
(𝑥 + 𝑦)(𝑥 + 𝑦 + 1) + 𝑥

For more variables, we can iterate as

𝜋(𝑥, 𝑦, 𝑧) = 𝜋(𝜋(𝑥, 𝑦), 𝑧)

This construction is a generalization of Cantor’s proof that |ℚ| = |ℕ|

This tells us that ∀𝑘, ℕ𝑘 is always effectively countable.

Examples: Effectively Countable Sets
1. The set of finite tuples of arbitrary length ∪𝑘≥0 ℕ𝑘 → 𝑁 is effectively countable.

Consider the following map:

𝜏 : ∪𝑘≥0 ℕ𝑘 → 𝑁

𝜏(∅) = 0 𝜏(𝑎1, 𝑎2, …, 𝑎𝑘) = 2𝑎1 + 2𝑎1+𝑎2+1 + 2𝑎1+𝑎2+𝑎3+2 + … + 2𝑎1+𝑎2+…+𝑎𝑘+𝑘−1 For example,
𝜏(0, 0) = 1 + 2 = 3 = 112 𝜏(2, 1, 0) = 4 + 16 + 32 = 52 = 1101002 An n-tuple is mapped to a
number whose binary representation uses exactly n 1s. We now show that 𝜏 is a bĳection:
2.
3. Let A, B be effectively countable, but infinite sets.

(i) If A and B are disjoint, then

𝐴 ∪ 𝐵

is effectively countable. Proof: Given that

𝐴 ∩ 𝐵 = ∅

. A and B are disjoint → ∃ bĳections between ℕ and A, and ℕ and B. Now

𝐴 ∪ 𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

Let 𝑎𝑖 be the ith element of A, and 𝑏𝑖 be the ith element of B. We enumerate elements of A as
𝑎1, 𝑎2, … and elements of B as 𝑏1, 𝑏2, …. Enumerate the elements of

𝐴 ∪ 𝐵

Anagha G 5/19

Computability Theory 6/19

as {𝑎1, 𝑎2, …, 𝑏1, 𝑏2, …}. We can always do this because both A and B are effectively countable.

(ii). 𝐴 ∩ 𝐵 is countable

Proof: Always 𝐴 ∩ 𝐵 ⊆ 𝐴. But A is countable. So is 𝐴 ∩ 𝐵.

(iii) If A and B are not necessarily disjoint, prove that A ∪ B is effectively countable.

Proof: We can assume A and B are disjoint and proceed as above. Because if not, 𝐴 ∪ 𝐵 = (𝐴 ∖
𝐵) ∪ (𝐵 ∖ 𝐴) ∪ (𝐴 ∩ 𝐵). These are 3 disjoint sets, whose union we have shown to be countable.

4. Show that if a class A of objects is constructed recursively using a finite set of basic objects
and a finite collection of computable closure operators (see §2.5), A is effectively countable.

Partially Recursive functions
• The code of a TM is called its index.
• Any particular code of a TM is called an enumeration of the TM,or equivalently, its partial

recursive function
• Notation: 𝜑𝑒 is the 𝑒𝑡ℎ function in the enumeration of a machine with an index e.

Padding Lemma:
Given any index e of a Turing Machine M, there ∃ a larger index e’ which codes a
machine that computes the same function as M This can also be stated as

Proof: Add redundant states in between. Can we use a Rice’s Theorem type argument?

Universal Turing Machines
We are now in a position to construct a TM that can emulate every other TM, using the enu-
meration of TMs and the pairing function.

𝑈(⟨𝑒, 𝑥⟩) = 𝜑𝑒(𝑥)

On countability and effective countability
• Do countability and effective countability mean the same thing? No!
• Effective countability is the same thing as recursively enumerable. i.e., a set is effectively

countable if there exists an enumeration procedure for it.
• We know that recursively enumerable → countable. However, the converse need not hold.
• To see this, consider the following example. We know that ℕ is both countable and effectively

countable.
• Consider any subset of ℕ. That subset is countable.
• But it need not be effectively countable. For this, consider the indices of total computable

functions.

Theorem:
There is no computable indexing of total computable functions.

The Church Turing Thesis
Theorem:
The class of Turing Computable and partial recursive functions are exactly the same.
Proof:
⇒ Given a Turing machine, simply emulate the behavior of the function on every step of the
computation.

Anagha G 6/19

Computability Theory 7/19

Other Definitions of Computability
So far, we have encountered TMs and UTMs. There are several other “redefinitions” of turing
machines that also retain the power of TMs. I will prove one of them, and restate several (refer
to Sipser TOC for more)

Example:
Prove that a two-symbol Turing machine can simulate an n-symbol Turing machine,
for any n.

Soln

Develop a fixed binary length encoding for all symbols in the alphabet. Then proceed as usual.

More examples:
1. TM with semi-infinite tape
2. TM with one(or more) work tapes
3. TM with a grid of symbol squares instead of a tape, and a read/write head that can move

up or down as well as left or right.
4. TM where read/write head can move more than one square in either direction
5. TM with multiple read/write heads with single tape/multiple tapes

etc.

Non determinism
An NDTM works very similar to that of a DTM, except the transition function. In this case,
the TM has the option to go to several states from one particular state. This TM then has
the power to make that choice non deterministically. It can be showed that both NDTMs and
DTMs have the same computational power.

Lambda Calculus
Lambda Calculus forms the very basis of functional programming.
• It generally consists of a single transformation rule - a variable substitution and a single

function definition scheme. A typical expression would look like

(𝜆𝑥 | 𝐸)𝐴
• This means “replace every instance of x in E by A”
• These expressions are then built recursively.
• An expression can be an identifier (variables whose values don’t change over time), function,

several expressions, etc.
• Function evaluation happens from left to right. More precisely,

(𝜆𝑥𝑦|𝐸)𝐴𝐵 = (((𝜆𝑥 |)𝜆𝑦 | 𝐸)𝐴)𝐵
• Variables can be free or bound:

Anagha G 7/19

Computability Theory 8/19

Working with Computable Functions
Halting Problem
Consider the halting function:

𝑓(𝑒) = {
1 if 𝜑𝑒(𝑒) ↓
0 if 𝜑𝑒(𝑒) ↑

Define another function g:

𝑔(𝑒) = {
𝜑𝑒(𝑒) + 1 if 𝑓(𝑒) = 1
1 if 𝑓(𝑒) = 0

We can say the following:
• If f is computable, so is g
• g is not computable, so f is not computable. The halting problem is not computable.

The following set is the halting set: 𝐾 = {𝑒 : 𝜑𝑒(𝑒) ↓}

The contradictions
Suppose we have a collection of functions that can be indexed: 𝜓𝑛, 𝑛 ∈ ℕ. Then define 𝑔(𝑛) =
𝜓𝑛(𝑛) + 1. Then, the following three can’t hold simultaneously:
1. {𝜓𝑛}𝑛∈ℕ is an indexing
2. 𝑔 = 𝜓𝑖 for some i
3. g is total

Parametrization
Parametrization refers to the ability to push input parameters into the index of a function. We
now state the Parametrization Theorem:

Theorem:

There exists a total computable function 𝑠1
1 such that ∀𝑖, 𝑥, 𝑦, 𝜑𝑖(𝑥,𝑦) = 𝜑𝑠1

1(𝑖,𝑥)(𝑦)

We try to understand this more informally: This theorem basically says that, for a given pro-
gramming language, and given 𝑚, 𝑛 ∈ ℤ+, there exists an algorithm that accepts the source
code of a program with 𝑚 + 𝑛 free variables as input, along with m values. It then substitutes
the values for the first m free variables, leaving the remaining n variables free.

A bit more formally: Consider a function 𝑓(𝑥, 𝑦) that is computable. Then ∃ a total, computable
function 𝜑 such that 𝜑𝑠(𝑥)(𝑦) = 𝑓(𝑥, 𝑦)

smn Theorem (strong) Fix m and n. Let 𝑥 and 𝑦 be n and m tuples respectively. Then,
there ∃ a primitive recursive bĳective function 𝑠𝑚

𝑛 such that ∀𝑖, 𝑥, 𝑦,

Parametrization and UTMs help us convert operations on sets and functions to operations on
indices.

Fixed Point Theorem
Let f be a total computable function. Then ∃𝑛 ∈ ℕ such that 𝜑𝑛 = 𝜑𝑓(𝑛). Moreover, n can be
computed from an index of f.

Proof: The proof uses the smn theorem.

Anagha G 8/19

Computability Theory 9/19

Cor 4.4.4 Let f(x, y) be a partially computable function. Then there is an index e such that
𝜑𝑒(𝑦) = 𝑓(𝑒, 𝑦)

Proof: A function is partially computable if

Rice’s Theorem
Let A be a non trivial index set. Then 𝜒𝐴 is not computable.

In less mathematical terms, any non-trivial semantic property of a language is undecidable

Unsolvability
• By decidable, solvable and computable, we mean the same thing.
• The Halting Problem k is undecidable.
• It is useful to restate it as: “Is there an algorithm that decides, for any (index) e, does the

eth TM halt on input e?”
• Similarly we have other candidates; in each case, we try to encode each problem (uniformly)

using a TM and try to find out if it halts.

Relatives of the Halting Problem
We can extend the Halting Set as follows:

𝐾0 = {⟨𝑥, 𝑦⟩ : 𝜑𝑥(𝑦) ↓}

This is a more general case. If we have 𝜒𝐾0
, we can build 𝜒𝐾 .

Index Sets
From Rice’s Theorem, the following index sets are non-computable.
1. Fin = {𝑒 : 𝑊𝑒 is finite}
2. Inf = ℕ − Fin
3. Tot = {𝑒 : 𝑊𝑒 = ℕ}= {𝑒 : 𝜑𝑒 is total}
4. Rec = {𝑒 : 𝜒𝑊𝑒

 is computable}

In short, determining whether a given set has any non trivial property of any partially com-
putable function is uncomputable.

Production Systems:
These work very similar to Grammars.

Semi-Thue Productions: Let 𝑔, ̂𝑔 be finite non-empty words. A production of the form
𝑃𝑔𝑄 → 𝑃 ̂𝑔𝑄 is said to be Semi-thue.

• A semi-thue system is a (possibly infinite) collection of such productions.
• A single non-empty word a is called the axiom of the production.
• If a word w can be derived from a by finitely many applications of semi-thue productions,

w is said to be a theorem of the system.

We have the following:
• Construct a Semi-Thue system with infinitely many productions
• The problem of determining whether a word is a theorem in a Semi-Thue system is unde-

cidable.
• Any TM M can be represented using a Semi-Thue System

Anagha G 9/19

Computability Theory 10/19

Exercises
4.1.2: Define T (n) as the maximum value of s such that some Turing machine with
states contained in {𝑞0, …, 𝑞𝑛} halts after exactly s steps of computation.

(i) Show that T is not computable.

(ii) Show that there is no computable function B such that 𝐵(𝑛) ≥ 𝑇(𝑛) for all n

Proof: Suppose there is a TM M that computes T(n). Then, ∀𝑛 M can determine the maximum
number of steps that a TM with n states can take before halting. Construct M’ as follows: On
input n,
• Simulate all the TMs with states in {𝑞0, …, 𝑞𝑛} for s steps, where s is the output of M
• If any of these halt within m steps, then M’ enters an infinite loop. Otherwise, it halts.

Now run M’ on its own description. If M does compute T(n), M(m) gives the maximum number
of steps a TM with m states can take before halting. But M’ behaves differently: If M’ halts, it
enters an infinite loop and vice versa. Hence M does not compute T(n).

(ii). We already know that T(n) is not computable. If B(n) is indeed computable, then we can
indirectly compute T(n) via B(n) leading to a contradiction.

4.3.2: Prove there is a computable function f such that 𝜑𝑓(𝑥)(𝑦) = 2𝜑𝑥(𝑦)∀𝑦

We invoke smn theorem. ∃𝑔(𝑥, 𝑦) such that 𝜑𝑔(𝑥,𝑦)(𝑧) = 2𝜑𝑥(𝑦)∀𝑥, 𝑦, 𝑧.

Anagha G 10/19

Computability Theory 11/19

Computing and Enumerating sets
This section focuses on extending computability to sets, from functions.

Dovetailing Arguments
Given an arbitrary partial function 𝑓 : ℕ → ℕ, we don’t know at what point we might not get
an input. Dovetailing is a technique that aims to resolve that, by interweaving computations.

Some motivation:
Suppose you have an (potentially infinite) tree- which is saying its height is very long, and you
perform a DFS on it. This might turn out to be very tedious because you might be searching
an infinite path. However, consider performing BFS: you visit each node in a branching manner
and never hit the above issue.

In Turing Machines
In a TM, first run step 𝑓(0). If it halts, great. If not, run 𝑓(0) and 𝑓(1) together. At the nth
step, run the computations of 𝑓(0) through 𝑓(𝑛 − 1) each for n steps (don’t consider the ones
that have halted already). Each computation halts in finitely many steps. So we are good.

Computing and Enumerating
Definition: A function is computable if its characteristic function is computable.

A computable characteristic function is simply a membership procedure.

Facts
• Complement of a computable set is countable
• Any finite set is countable

Recursively enumerable
A set is said to be recursively enumerable if there exists a computational procedure to
enumerate its elements. This gives us a notion of computable approximability.

Given a set A, TFAE:

1. A is recursively enumerable.
2. A is the domain of some partially computable function.
3. A is the range of some partially computable function.
4. Either 𝐴 = ∅ or A is the range of a total computable function.
5. ∃ a total computable function 𝑓(𝑥, 𝑠) such that ∀𝑥, 𝑓(𝑥, 0) = 0, ∃ no more than one s such

that 𝑓(𝑥, 𝑠 + 1) ≠ 𝑓(𝑥, 𝑠) and lim𝑠 𝑓(𝑥, 𝑠) = 𝜒𝐴(𝑥).
6. There is a sequence of finite sets 𝐴𝑠, 𝑠 ∈ ℕ such that ∀𝑠, 𝐴𝑠 ⊆ 𝐴𝑠+1 and 𝐴 = ∪𝑠 𝐴𝑠

Note: Every computable set is computably enumerable. The converse is not true. For example,
the halting problem is r.e but not computable.

Proposition: An infinite set is computable if and only if it can be computably enu-
merated in an increasing order (it is the range of a monotone total computable
function)

Proof:

→ Let A be an infinite computable set. Then we need to show that it can be computably enu-
merated in an increasing order. As A is computable, it has a computable characteristic function
f(x). We want to show that A can be enumerated in increasing order. ∀𝑛, check if 𝑓(𝑛) = 1. If

Anagha G 11/19

Computability Theory 12/19

so, output n. Moreover f(x) is computable and monotonically increasing. It will enumerate in
an increasing order, and halt at some point.

← Suppose we have an infinite ser A that can be recursively enumerated in increasing order by
a function say g(x). To show A is computable, we nee to compute a characteristic function f(x)
for A. For any input x, check whether x appears in the enumeration of g(x). If so, set f(x) to 1,
otherwise f(x)=0.

Now, g is computable. We can effectivey determine if x appears in the enumeration by running
g(x) for every 𝑥 ∈ ℕ. We do this until we find x, or we find a number larger than x, so in either
case we terminate because it is an increasing enumeration.

Exercises:
5.2.9: If A is r.e., A is computable iff 𝐴 is r.e.

Proof: We restate it for clarity. A is decidable iff both A and 𝐴 are recursively enumerable. →
Let A be decidable. Then A is r.e. Also, 𝐴 is also decidable, and hence 𝐴 is also r.e.

→ Given that both A and 𝐴 are r.e. Let 𝑀1 and 𝑀2 be the recognizers for them respectively.
We construct a decider for A: On input w:
• Run both 𝑀1 and 𝑀2 on w in parallel
• If 𝑀1 accepts, accept. If 𝑀2 accepts, reject.

This procedure continues until one of them accepts, which is bound to happen.

Enumeration and Incompleteness
A language 𝐿 is a collection of symbols that represent constants, relations and functions.
Formulas in 𝐿 can use variables and quantifiers.

Languages consist of sentences. We can be interested in the syntactic or semantic aspects of
these sentences. An 𝐿 structure is a set of elements in 𝐿 along with (semantic) interpretations
of the constants and function symbols in 𝐿.

Soundness Theorem
Completeness plus Soundness: A formula is valid iff provable

Theorem: The set of valid formulas is computably enumerable, but not computable.

Let T be a set of sentences in 𝐿. We define a model 𝑀 to be an 𝐿 structure if all the sentences
of T are true when interpreted in M. An 𝐿 sentence 𝜑 such that neither 𝜑 nor ¬𝜑 is provable
is said to be independent of T. In other words, 𝜑 is said to be independent of T if ∃𝑀, 𝑁 ⊧ 𝑇 ,
𝑀 ⊧ 𝜑, 𝑁 ⊭ 𝜑

Robinson Arithmetic
The language (0, S, +, ⋅, =, <) constitutes this arithmetic: 0 is the constant, S is the unary
function symol, + and ⋅ are binary function symbols, and the others are binary relations.

A few points
• The Robinson Arithmetic (RA) has independent sentences.
• The axioms of RA are computable. Hence the set of provable sentences in RA is recursively

enumerable.
• Enumerate the list of refutable sentences in RA (call this R) by listing ¬𝜑 whenever 𝜑 ∈ 𝑃 .
• 𝑃 ∩ 𝑅 = ∅.

Anagha G 12/19

Computability Theory 13/19

Enumerating Noncomputable sets
• A set A is non-computable iff its characteristic function is nonequal to all (possible) totally

computable functions.
• Again, A can either be re or co-re.
• We bother with the first case, i.e., when A is recursively enuemrable.

Definition: Let A be r.e. A is simple if 𝐴 is infinite, but contains no infinite c.e. subsets. Then
𝐴 is said to be immune.

A few points:
• A set is simple if it is RE and its complement is simple.
• All simple sets aren’t necessarily infinite, but they turn out to be.
• Suppose a simple set A is finite. Then it is computable. Then 𝐴 is cofinite, and also com-

putable.
• But 𝐴 is now an infinite ce set, and cannot be immune, a contradiction.

Problem: Prove that if A is simple, it is not computable

Proof: Let A be simple, and A be computable on the contrary. Then 𝐴 would be computable
too. From the discussion above, it would follow that A cannot be computable.

Similarly, we can prove the following:
• A coinfinite re set is simple iff it is not contained in any coinfinite computable set.
• Suppose A and B are simple. Then

‣ 𝐴 ∩ 𝐵 is also simple
‣ 𝐴 ∪ 𝐵 is either simple or cofinite

Anagha G 13/19

Computability Theory 14/19

Turing Reductions and Post’s Problem
Reducibility of Sets
Definition: An oracle Turing Machine with an oracle A is a TM that can ask finitely many
questions about membership in A.

A few points:
• Finitely many questions corresponds to it being computable
• Number of questions asked is both input and output sensitive
• Uniformity: Every index codes a well defined function irrespective of the oracle
• Denote an oracle TM by 𝑀𝐴 and an oracle function by 𝜑𝐴

• Let 𝜎 be an oracle. Any oracle query with ≥ |𝜎| elements diverges.

Exercise: Let 𝜎 range over all finite binary strings. Let 𝑒, 𝑠, 𝑥, 𝑦 range over ℕ. Prove that the
set {< 𝜎, 𝑒, 𝑥, 𝑠, 𝑦 >: 𝜑𝜎

𝑒,𝑠(𝑥) ↓= 𝑦} is computable.

Proof: We need to construct a TM that can decide whether a given input belongs to this set
(S) on not.

Let S be a set. For any input < 𝜎, 𝑒, 𝑥, 𝑠, 𝑦 >, decide whether 𝜑𝑒(𝜎, 𝑠)(𝑥) ↓= 𝑦.

Construct a TM M that simulates the computation of 𝜑𝑒(𝜎, 𝑠)(𝑥) on input x, with 𝜎 as an
oracle (use dovetailing here). Accept if computation halts and produces y. Else reject.

Definition: If 𝜑𝐴
𝑒,𝑠(𝑥) ↓, then define the use of the computation as

𝑢(𝐴; 𝑒, 𝑥, 𝑠) = 1 + max{𝑛 : n in A}

asked during computation.

• The use of divergent computations is defined to be 0 for stage bounded version.
• For the unbounded version, it is defined.

Notation: 𝐴 |𝑛 = 𝐴 ∩ {0, 1, …, 𝑛 − 1}

Use Principle
1. 𝜑𝐴

𝑒 (𝑥) = 𝑦 → (∃𝑠)(∃𝑛)(𝜑𝐴 |𝑛𝑒,𝑠 (𝑥) = 𝑦)
2. We can extrapolate the principle appropriately to finite and infinite binary strings as follows:

Let 𝜎, 𝜏 be finite binary strings, and A be an infinite binary sequence. The following hold:

𝜑𝜎
𝑒,𝑠(𝑥) = 𝑦 → (∀𝑡 ≥ 𝑠)(∀𝜏 ⊇ 𝜎)(𝜑𝜏

𝑒,𝑡(𝑥) = 𝑦)

𝜑𝜎
𝑒,𝑠(𝑥) = 𝑦 → (∀𝑡 ≥ 𝑠)(∀𝐴 ⊃ 𝜎)(𝜑𝐴

𝑒,𝑡(𝑥) = 𝑦)

Turing Reduction
A set A is Turing reducible to a set B, denoted by 𝐴 ≤ 𝐵, if for some e, 𝜑𝐵

𝑒 = 𝜒𝐴. Then A is
said to be computable with oracle B.

Turing Equivalence:
Sets A and B are said to be Turing Equivalent, denoted by 𝐴 ≡ 𝑇𝐵 if 𝐴 ≤ 𝑇𝐵, 𝐵 ≤ 𝑇𝐴.

Two sets can also be Turing incomparable: 𝐴 ⊥ 𝑇𝐵.

We can show the following:
1. ≤ 𝑇 is a reflexive and transitive relation on 𝑃(ℕ).

Anagha G 14/19

Computability Theory 15/19

2. There is a function k such that ∀𝑖, 𝑒, 𝐴, 𝐵, 𝐶, if 𝜒𝐶 = 𝜑𝐵
𝑒 and 𝜒𝐵 = 𝜑𝐴

𝑒 then 𝜒𝐶 = 𝜑𝐴
𝑘(𝑒,𝑖)

3. Turing equivalence is an equivalence relation.We will learn about the equivalence classes
induced by this relation, the turing degree in the next section.

4. A computable set is Turing Reducible to any arbitrary set.
5. If A is computable, and 𝐵 ≤ 𝑇𝐴, then B is also computable.

Turing Complete Sets
Sets that are c.e and can compute all other c.e sets are said to be turing complete.

Theorems: We shall state the following theorems without proof here.
1. The halting set, K is Turing Complete.

Define the weak Jump 𝐻 = {𝑒 : 𝑊𝑒 ≠ ∅}
1. The Weak Jump is c.e, and is Turing Complete.

Finite Injury Priority Arguments
The main goal of this section is to construct a simple set. A c.e set A is said to be simple if 𝐴
is infinite but does not contain any infinite c.e subset.

To construct an arbitrary set A, we can have an infinite collection of requirements {𝑅𝑒}𝑒∈𝐼 ,
I is an index set in bĳection with ℕ. It is possible that these requirements can interact with
each other and injure each other to the extent that none of them ever get satsified. To solve
this, we introduce priority. We order the requirements in such a way that a requirement 𝑅𝑖 can
injure 𝑅𝑗 if and only if 𝑗 > 1. Moreover, 𝑅𝑖 can injure 𝑅𝑗 only finitely many times. We call
these finite injury priority arguments.

Theorem: There exists a simple set

Post’s Problem
Does there exist a c.e set A such that A is non-computable and incomplete?

We give an answer in the affirmative.

To show this, we will construct a set A that is simple, and a set B that is c.e but cannot be
computed by A. And hence, A is incomplete.

The requirements are follows:

𝑅𝑒 : (|𝑊𝑒| = ∞) ⇒ (𝐴 ∩ 𝑊𝑒 ∩ {𝑥 ∈ ℕ : 𝑥 > 2𝑒} ≠ ∅)

𝑄𝑒 : 𝜑𝐴
𝑒 ≠ 𝜒𝐵

Anagha G 15/19

Computability Theory 16/19

Hierarchies of Sets
In the previous section, we introduced the notion of Turing reducibility and Turing equivalence.
Turing Equivalence can be seen as an equivalence relation on 𝑃(ℕ) using an s-m-n theorem
type argument.

Given a set A and an equivalence relation R on A, the quotient of A by R 𝐴/𝑅 is the set whose
elements are the equivalence classes of A under R.

Turing Degrees
• The quotient of 𝑃(ℕ) by Turing Equivalence is called Turing Degree or Degree of Un-

solvability.
• Let 𝐴 ⊆ ℕ be any set. The degree of A is the equivalence class of A under Turing Equiva-

lence, and is denoted by deg(A).

Results
1. The least turing degree is deg(∅). It is the degree of all computable sets.

Proof:

We want to show ∀𝐴 ⊂ ℕ, deg(∅) ≤ deg(𝐴). Let X be any computable set, and 𝐴 ⊂ ℕ. Then
𝑋 ≤ 𝐴. Then 𝑋 ∈ deg(∅), deg(∅) ≤ deg(𝐴)∀𝐴 ⊂ ℕ

2. Every pair of degrees deg(A) and deg(B) has a least upper bound. LUB = deg(𝐴 ⊕ 𝐵)

Proof:

3. For all sets, deg(𝐴) = deg(𝐴)

Proof: We have seen that for any arbitrary set A, 𝐴 ≡ 𝑇𝐴. They belong to the same equiva-
lence class.

4. Every infinite c.e set contains subsets of every Turing Degree.

Proof: Let D be the set of all Turing Degrees. First use Cantor’s Diagonalization argument to
show there can be uncountably many Turing Degree. So D is uncountable. Set up a bĳection
between D and ℕ. Then 𝐷 = {𝑑𝑛}𝑛∈ℕ. And let 𝐴 = {𝑎𝑛}(𝑛 ∈ ℕ).

Constructs subsets 𝐵𝑛 of A as follows:
1. ∀𝑑𝑛 let 𝑀𝑛 be a TM such that 𝐴𝑀𝑛

 has turing degree 𝑑𝑛
2. Then 𝐴𝑀𝑛

= {𝑎𝑛,𝑘}
𝑘∈ℕ

3. Let 𝐵𝑛 be the set having the first k elements of A such that 𝑎𝑛,𝑘 ∈ 𝐴𝑀𝑛
.

Thus each 𝐵𝑛 has Turing degree 𝑑𝑛. But D is an infinite set.

Defn: A degree is called c.e if it contains a c.e. set.

Recall that these Turing degrees are equivalence classes themselves.

Note: Also, K is Turing Complete. Therefore the maximum c.e degree is deg(K).

Theorems:
1. Every Turing Degree contains countably many sets

Proof: Let A be a set. Any other set 𝐵 = 𝜑𝐴
𝑒 , (e is countable) and so there are atleast countably

many B such that 𝐵 ≡ 𝑇𝐴. There should be at most countably many such B using a symmetric
difference argument.

Anagha G 16/19

Computability Theory 17/19

2. We have shown that there are infinitely many indistinct Turing degrees. There are 2ℵ0 many
distinct Turing degrees, where ℵ0 = |ℕ|.

Proof: There are 2ℵ0 sets, and every turing degree contains countably many sets.

3. There is no maximal Turing degree.

Relativization
Fix some set A and work with A as your oracle “i.e work relative to A”.

Relativized s-m-n theorem
∀𝑚, 𝑛 ≥ 1 there exists a one to one computable function 𝑠𝑚

𝑛 of m+1 variables such that ∀𝐴 ⊆
ℕ, ∀𝑖, 𝑥, 𝑦, where the last two are n-tuples

𝜑𝐴
𝑠𝑚

𝑛
(𝑖, 𝑥) = 𝜑𝐴

𝑖 (𝑥, 𝑦)

• This doesn’t add much help, because 𝑠𝑚
𝑛 is already computable even without an oracle.

Defn: A set B is computably enumerable in the set A if, ∃𝑒, 𝐵 = 𝑊𝐴
𝑒 .

• Think of A as a parameter, and not in terms of inclusion.
• Essentially this means using A as an oracle, we can computably enumerate A

Notes:
1. This is not transitive. Let A be c.e in B, and B be c.e wrt C. We need to show A is not c.e

wrt C. For this, Let C be any recursive set, and A is r.e wrt B but not r.e wrt all domains.
More specifically, this should work if B is r.e but not co-r.e.

2.

Theorem:
The set 𝐴′ = {𝑒 : 𝜑𝐴

𝑒 (𝑒) ↓} is c.e in A but not computable in A.

• This is the halting set relativized to A
• Also called the Turing Jump of A

Turing Jump
Jump is an operator that assigns to a decision problem X a “successively harder decision prob-
lem X” that is minimal in the following sense: it cannot be decided by an oracle for X.

• Thus the jump of X can be thought of as an oracle for halting problem K for oracle machines
with an oracle for X

Arithmetical Hierarchy
This is a way of categorizing sets according to how complicated the logical predicate represent-
ing them has to be:

Definitions
1. Let B a computable set. Then B is Σ0 and Π0
2. If 𝑥 ∈ 𝐵 ⇔ (∃𝑦)(𝑅(𝑥, 𝑦)), where R(x, y) is a computable relation, then 𝐵 ∈ Σ1
3. If 𝑥 ∈ 𝐵 ⇔ (∀𝑦)(𝑅(𝑥, 𝑦)), where R(x, y) is a computable relation, then 𝐵 ∈ Π1
4. If 𝜑 is logically equivalent to a formula (∃𝑚1)(∃𝑚2)…(∃𝑚𝑘)𝜓, where psi is Π0

𝑛, then 𝜑 is
Σ0

𝑛+1
5. If 𝜑 is logically equivalent to a formula (∀𝑚1)(∀𝑚2)…(∀𝑚𝑘)𝜓, where psi is Σ0

𝑛, then 𝜑
is Π0

𝑛+1

Anagha G 17/19

Computability Theory 18/19

6. If B is both Σ𝑛 and Π𝑛, it is Δ𝑛
7. B is arithmetical if for some n 𝐵 ∈ Σ𝑛 ∪ Π𝑛

We can relativize these appropriately.

Exercises:
1. If 𝐵 ∈ Π𝑛 or 𝐵 ∈ Σ𝑛, then 𝐵 ∈ Π𝑛 and Σ𝑛∀𝑚 > 𝑛
2. 𝐵 ∈ Σ𝑛 ⇔ 𝐵 ∈ Π𝑛
3. B is c.e iff 𝐵 ∈ Σ1

Proposition: ∀𝑛 ≥ 1∃ a Σ𝑛 set that is not Π𝑛
• The Σ1 sets are effectively countable: they correspond exactly to c.e sets
• Thus they correspond to Π1 sets as well
• We can have enumerations for both of those
• Using them, inductively construct enumerations for Π𝑛 and Σ𝑛∀𝑛 ≥ 1
• In particular, we have a Σ𝑛 set, call it S. S corresponds to the UTM. By this, it also corre-

soinds to Σ𝑛 itself
• ⟨𝑒, 𝑥⟩ ∈ 𝑆 iff the 𝑒𝑡ℎ Σ𝑛 set contains x
• Define 𝑃 ≔ {𝑥 : ⟨𝑥, 𝑥⟩ ∈ 𝑆}
• Claim: P is Σ𝑛 but P is not Π𝑛. 𝑃 ∈ Σ𝑛 by construction. If 𝑃 ∈ Π𝑛, then 𝑃 ∈ Σ𝑛. Then 𝑃

is the eth Σ𝑛 set for some n. This leads to a contradiction
• A similar argument shows that 𝑃 is Π𝑛 but not Σ𝑛

Definitions:
1. A set A is Σ𝑛 complete if 𝐴 ∈ Σ𝑛 and ∀𝐵 ∈ Σ𝑛∃ a total computable 1-1 function f such that

𝑥 ∈ 𝐵 ⇔ 𝑓(𝑥) ∈ 𝐴. Then B is 1-reducible to A.
2. A set A is Π𝑛 complete if 𝐴 ∈ Π𝑛 and ∀𝐵 ∈ Σ𝑛∃ a total computable 1-1 function f such that

𝑥 ∈ 𝐵 ⇔ 𝑓(𝑥) ∈ 𝐴. Then B is 1-reducible to A.

Observations:
• X is Σ𝑛 complete ⇔ 𝑋 is Π𝑛 complete
• ∀𝑛 > 0, ∅(𝑛) is Σ𝑛 complete and ∅(𝑛) is Π𝑛 complete

Post’s Theorem
TFAE.
1. 𝐵 ∈ Σ𝑛+1
2. B is c.e in some Π𝑛 set.
3. B is c.e in some Σ𝑛 set.

We also have:
• 𝐵 ∈ Σ𝑛+1 ⇔ B is c.e in ∅(𝑛)

• 𝐵 ∈ Δ𝑛+1 ⇔ B is Turing-reducible to ∅(𝑛)

Index Sets and Arithmetical Completeness
We can define the following sets.
1. Fin = {𝑒 : |𝑊𝑒| < ∞}
2. Inf = {𝑒 : |𝑊𝑒| = ∞}
3. Tot = {𝑒 : 𝜑𝑒} is total.
4. Con = {𝑒 : 𝜑𝑒} is total and constant
5. rec = {𝑒 : 𝑊𝑒} is computable

We summarise the findings of this section below:

Anagha G 18/19

Computability Theory 19/19

• Fin ∈ Σ2. Moreover, it is Σ2 complete
• Inf ∈ Π2. Moreover, it is Π2 complete
• Rec ∈ Σ3
• Tot ∈ Π2. Moreover, it is Π2 complete.
• Con in Π2. Moreover, it is Π2 complete.

Anagha G 19/19

	Introduction
	Defining Computability
	On functions
	Halting Criteria:
	Equality of functions

	Characteristic function

	Turing Machines
	Exercises

	Partial Recursive Functions
	Primitive Recursive Functions
	Examples

	Non primitive recursive function
	Partial Recursive Functions: Unbounded Search
	Examples

	On Coding and Countability
	Effective Countability
	Examples:

	Pairing Function
	Examples: Effectively Countable Sets

	Partially Recursive functions
	Padding Lemma:

	Universal Turing Machines
	On countability and effective countability
	Theorem:

	The Church Turing Thesis
	Other Definitions of Computability
	Example:
	Non determinism
	Lambda Calculus

	Working with Computable Functions
	Halting Problem
	The contradictions
	Parametrization
	Fixed Point Theorem
	Rices Theorem
	Unsolvability
	Relatives of the Halting Problem
	Index Sets
	Production Systems:

	Exercises

	Computing and Enumerating sets
	Dovetailing Arguments
	Some motivation:
	In Turing Machines

	Computing and Enumerating
	Recursively enumerable

	Exercises:
	Enumeration and Incompleteness
	Soundness Theorem

	Robinson Arithmetic
	Enumerating Noncomputable sets

	Turing Reductions and Posts Problem
	Reducibility of Sets
	Use Principle

	Turing Reduction
	Turing Equivalence:
	Turing Complete Sets

	Finite Injury Priority Arguments
	Posts Problem

	Hierarchies of Sets
	Turing Degrees
	Results

	Relativization
	Relativized s-m-n theorem
	Theorem:
	Turing Jump

	Arithmetical Hierarchy
	Definitions
	Exercises:
	Posts Theorem
	Index Sets and Arithmetical Completeness

